moteur de recherche

Dynamics of electrons and nuclei in molecules: Beyond the Born-Oppenheimer approximation


20.01.2020 14:00 Age: 2 yrs

Dynamics of electrons and nuclei in molecules: Beyond the Born-Oppenheimer approximation

Category: Séminaires de l'équipe CT

Federica Agostini (Université Paris Sud)

Lieu et heure: Salle N20bis, 3 eme étage, bâtiment Lavoisier, 14h.

Federica Agostini, Laboratoire de Chimie Physique, université Paris-Sud


Excited-state dynamics is at the heart of Photophysics and Photochemistry. Nonadiabatic transitions are induced by the strong coupling between electronic dynamics and the ultrafast motion of the nuclei, and are observed in phenomena such as photosynthesis, photovoltaics, and exciton transport in π-conjugated complexes. An essential part of the research efforts in these fields is directed towards developing theoretical and computational approaches to describe conformational changes, energy dissipation, or quantum decoherence, i.e., the signature aspects of excited-state processes. In this context, among the most successful frameworks for molecular dynamics simulations of excited-state processes stand trajectory-based quantum-classical methods, as they give access to the study of complex molecular systems. Trajectory-based approaches combine a classical description of nuclear dynamics with a quantum-mechanical description of electronic dynamics. However, the approximations underlying quantum-classical methods are sometimes severe, and are at the origin of controversies as well as of continuous developments.
In this talk I will present a recently-developed trajectory-based approach to nonadiabatic dynamics [1,2]. The actual numerical scheme has been derived from the exact factorization of the electron-nuclear wavefunction [3, 4], a new framework proposed to investigate, interpret and approximate the coupled dynamics of electrons and nuclei beyond the Born-Oppenheimer approximation. The exact factorization provides a new perspective to analyze nonadiabatic processes: (i) it proposes an alternative [5, 6] to the standard Born-Oppenheimer framework, that pictures excited-state processes in terms of wavepackets moving on and transferring between static potential energy surfaces; (ii) it suggests new interpretations [7] of molecular geometric-phase effects, related to conical intersections; (iii) it provides guidelines for developing simulation algorithms in different [8] nonadiabatic regimes. These points will be discussed during the talk and illustrated on low-dimensional models and molecular systems.
[1] S. K. Min, F. Agostini, I. Tavernelli, E. K. U. Gross, J. Phys. Chem. Lett. 2017, 8, 3048-3055.
[2] S. K. Min, F. Agostini, E. K. U. Gross, Phys. Rev. Lett. 2015, 115, 073001.
[3] A. Abedi, N. T. Maitra, E. K. U. Gross, Phys. Rev. Lett. 2010, 105, 123002.
[4] F. Agostini, B. F. E. Curchod, WIREs Comput. Mol. Sci. 2019, 9, e.1417.
[5] A. Abedi, F. Agostini, Y. Suzuki, E. K. U. Gross, Phys. Rev. Lett. 2013, 110, 263001.
[6] F. Talotta, S. Mosrisset, N. Rougeau, D. Lauvergnat, F. Agostini, Phys. Rev. Lett. (accepted).
[7] B. F. E. Curchod, F. Agostini, J. Phys. Chem. Lett. 2017, 8, 831-837.
[8] A. Scherrer, F. Agostini, D. Sebastiani, E. K. U. Gross, R. Vuilleumier, Phys. Rev. X 2017, 7, 031035.




Dernière mise à jour : 22/09/2017

Equipe de recherche du laboratoire MSME : Retour à la page d'accueil de MSME